谁知道全世界最全的汽车标志的名称?_? 各种汽车标志及名称
2023-12-15
自动驾驶汽车有望解决交通拥堵问题,通过车辆间通信增强交通流量,并通过提供舒适安全的旅程彻底改变旅行体验。此外,将自动驾驶技术集成到电动汽车中可以有助于打造更加环保的交通解决方案。
自动驾驶汽车成功的一个关键要求是它们能够在不同的环境中检测和绕过障碍物、行人和其他车辆。当前的自动驾驶汽车采用智能传感器,例如用于获取周围环境和深度信息的 3D 视图的 LiDAR(光检测和测距)、用于在夜间和阴天检测物体的 RADaR(无线电检测和测距)以及用于提供 RGB 的一组摄像头图像和 360 度视图,共同形成一个称为点云的综合数据集。然而,这些传感器经常面临挑战,例如在恶劣天气、非结构化道路或由于遮挡等情况下检测能力下降。
为了克服这些缺点,由仁川嵌入式系统工程系 Gwanggil Jeon 教授领导的国际研究团队国立大学(韩国仁川大学 (INU) 最近开发了一种突破性的物联网深度学习端到端 3D 物体检测系统。 "我们提出的系统实时运行,增强了自动驾驶车辆的物体检测能力,使交通导航更加顺畅和安全r< a i=5>,”全教授解释道。他们的论文已于 2023 年 10 月 17 日在线发布,并发表在该杂志第 24 卷第 11 期上IEEE 智能交通系统学报,2023 年 11 月。
所提出的创新系统建立在 YOLOv3(You Only Look Once)深度学习目标检测技术之上,该技术是可用于 2D 视觉检测的最活跃的最先进技术。研究人员首先使用这种新模型进行 2D 物体检测,然后修改 YOLOv3 技术来检测 3D 物体。系统使用点云数据和 RGB 图像作为输入,生成带有置信度分数的边界框和可见障碍物的标签作为输出。
为了评估系统的性能,团队使用 Lyft 数据集进行了实验,该数据集包含从帕洛阿尔托的 20 辆自动驾驶汽车按预定路线行驶时捕获的道路信息加利福尼亚州,历时四个月。结果表明,YOLOv3 表现出很高的准确性,超越了其他最先进的架构。值得注意的是,2D 和 3D 对象检测的总体准确率分别高达 96% 和 97%,令人印象深刻。
教授。 Jeon 强调了这种增强的检测能力的潜在影响:“通过提高检测能力,该系统可以推动自动驾驶汽车进入主流。自动驾驶汽车的引入有可能改变运输和物流行业,通过减少对人类驾驶员的依赖和引入更高效的运输方式来提供经济效益。”
此外,目前的工作预计将推动传感器、机器人和人工智能等各个技术领域的研究和开发。认识到当前对 2D 图像开发的关注,该团队的目标是探索用于 3D 对象检测的其他深度学习算法。
总之,这项开创性的研究可以为自动驾驶汽车的广泛采用铺平道路,进而为更环保、更舒适的交通方式铺平道路。
版权声明:本站所有作品图文均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系我们
推荐阅读
2023-12-15
2023-12-15
2023-12-15
2023-12-15
2023-12-15
2023-12-15
2023-12-15
2023-12-15
2023-12-15
2023-12-15
2023-12-15
2023-12-15
2023-12-15
2023-12-15
栏目热点
谁知道全世界最全的汽车标志的名称?_? 各种汽车标志及名称
BAC将Mono变成艺术汽车挑战赛的画布
雪佛兰克尔维特是倒车最快的汽车
布加迪现在有威龙和凯龙的CPO计划
帕加尼拒绝为乌托邦提供1,000马力混合动力V8
新福特超级责任不会放弃动力冲程柴油机
这批新的谍照并没有比我们已经看到的更多宝马M3CS的车身前部仍然涂着迷彩
我们的还是有一些关于梅赛德斯奔驰AMG模型未来的报告
新奥迪概念预览电动Q8tron
宝马推出新款MHybridV8LeMansRacer